

电动执行器 选型资料

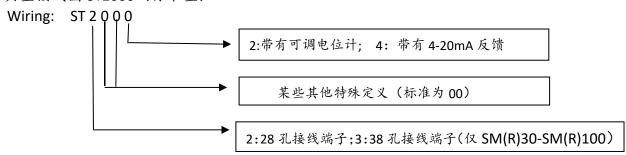
1.标准配置说明

1.1 对于所有kiket电动执行器(通用配置)

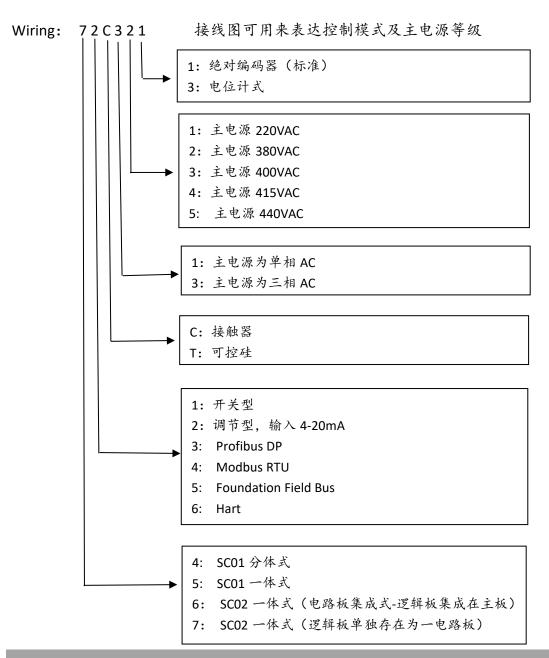
- ◆ 防护等级为 IP68(符合 DIN EN 60529 标准)。
- ◆ 电机绝缘等级为 F, 需要时可以做到 H, 均能适应热带气候环境。
- ◆ 正常环境温度为-30°C至+70°C,需要时低温型可做到-50°C,高温型可做到+120°C。
- ◆ 配带手轮,可进行手动操作,电动时自动切换。
- ◆ 开关型动作次数可达 600 次/小时,连续工作 15 分钟;调节型动作次数可达 1200 次/小时。
- ◆ 可提供中文说明书。

1.2 对于基本型电动执行器(不含一体化控制单元)

- ◆ 开关方向各有限位开关两常开,两常闭:力矩开关一常开一常闭,需要时可做到两常开两常闭。
- ◆ 箱体材质为铸钢,箱体外部的螺栓全部为不锈钢材质。
- ◆ 电缆进线孔为双密封型, SM(R)30-SM(R)100 为 2*1"+1*1 1/2"NPT 其他为 2*3/4"+1*1"NPT。
- ◆ 配带机械位置指示。

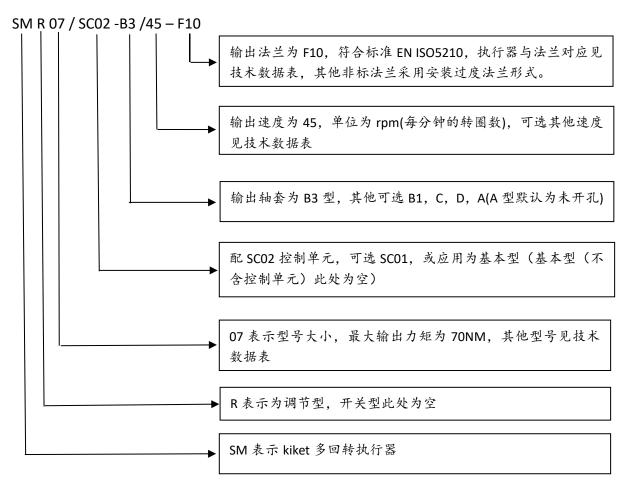

1.3 对于智能一体化电动执行器(含一体化控制单元 SC01 或 SC02)

- ◆ 配有永磁型绝对编码器,位置力矩等设置保持永久记忆,不依赖电源,所有调试不需开盖。
- ◆ 执行器为智能型,带液晶显示,通过蓝牙可与智能手机(IPHONE)进行通讯/调试/故障诊断等。
- ◆ 执行器具有历史记忆,可以随时查询发生的操作/设置/事件/故障等信息,并记录信息发生的时间, 各保留最新 100 条信息。
- ◆ 执行器开关接点: 力矩开关1常开1常闭, 限位开关1常开1常闭; 六输出接点对可自由编程。
- ◆ SC02 标配为防爆型, 防爆等级 II2G EEx d IIC T4。
- ◆ SC01 需要时可分体安装。
- ◆ 接线孔: SC02 电缆进线孔为双密封型,配 SM(R)30-SM(R)100 为 2*1"+1*1 1/2"NPT 其他为 2*3/4"+1*1"NPT; SC01 接线端子为插拔式,电缆进线孔 M32*1.5+M25*1.5+M20*1.5。
- ◆ 控制单元壳体材质为特制铝合金,箱体外部的连接螺栓全部为不锈钢材质。

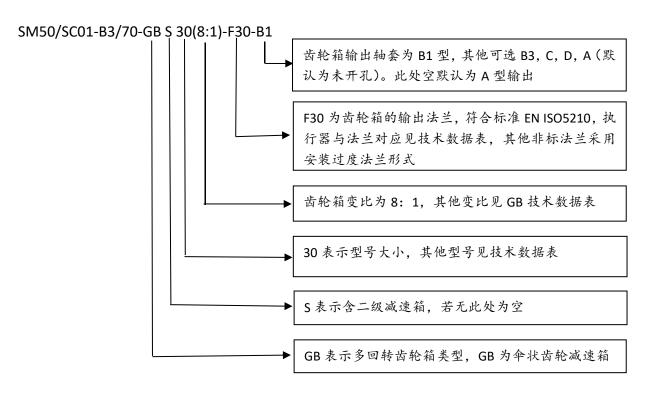

2.接线图的选择

2.1 基本型 (不含一体化控制单元)

典型接线图 ST2000 (标准型)


2.2 一体化型(含一体化控制单元 SC01 或 SC02)

3.多回转执行器


多回转执行器 SM(R)系列可应用为基本型 (不含一体化控制单元), 可配 SC01, 也可配 SC02。

3.1 单独的执行器 (不含齿轮箱)

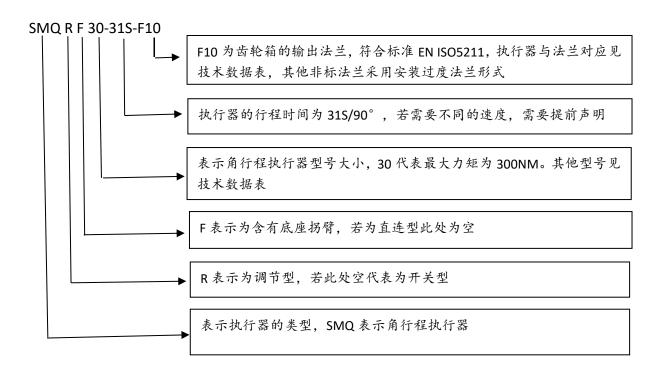
3.2 多回转执行器 SM+多回转齿轮箱 GB

对于力矩比较大,而速度不需很快的场所, kiket 提供多回转齿轮箱 GB 的解决方案。

信息 kiket 齿轮箱 GB 有较高输出效率,不含二级减速效率大约为 0.9,含二级减速(即 GBS)大约为 0.85。

上面含有伞齿轮箱 GB 的执行器最终输出速度=执行器输出速度/齿轮箱变比=70/8≈9rpm 上面含有伞齿轮箱的最大实际输出力矩=执行器最大力矩*变比*效率=500*8*0.85=3400NM

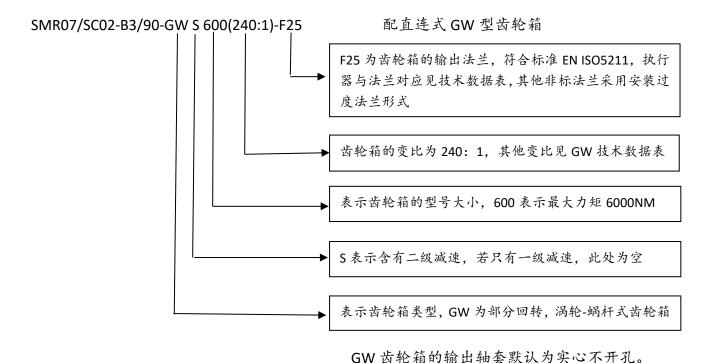
计算出的齿轮箱最大实际输出力矩一般要在齿轮箱的最大输出范围之内,选型不当可能会造成齿轮箱的损坏。

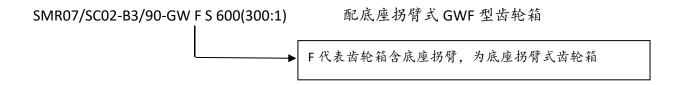

4.角行程执行器

角行程(部分回转)执行器 SMQ(R)系列可应用为基本型(不含一体化控制单元),含一体化控制装置的应用为 SC02。

SMQ 系列角行程执行器可以做到最大力矩 3500NM, 更大的角行程采用多回转执行器 SM+部分回转齿轮箱 GW。

信息 在现场空间容许的情况下,对于大于 1500NM 以上的优先考虑后者即 SM+GW 的应用。


4.1 单独的执行器 SMQ 系列 (不含齿轮箱)



SMQ 直连式轴套默认实心不开孔

4.2 多回转执行器 SM+部分回转齿轮箱 GW

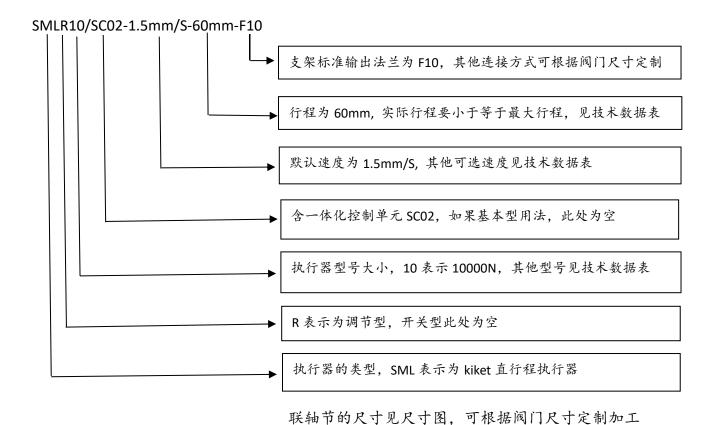
对于力矩比较大的角行程输出, kiket 提供部分回转齿轮箱 GW 的解决方案。

信息 kiket 齿轮箱 GW 的输出效率不含二级减速大约为 0.40, 含二级减速(即 GWS)效率大约为 0.35。

上面齿轮箱 GWS600 行程 90°的行程时间=变比/4/执行器速度*60=240/4/90*40=50S

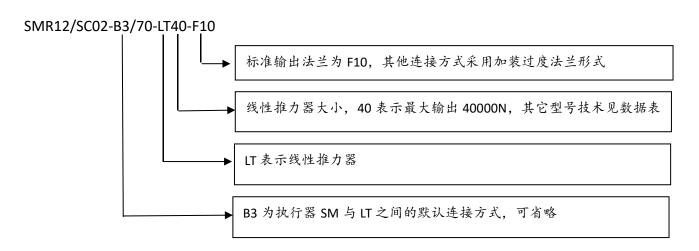
上面齿轮箱 GWS600 的最大输出力矩=执行器最大输出力矩*变比*齿轮箱效率 \approx 70*240*0.35=5880NM

计算出的齿轮箱最大实际输出力矩一般要在齿轮箱的最大输出范围之内,选型不当可 注意 能会造成齿轮箱的损坏。


5.直行程执行器

直行程执行器 SML(R)系列可应用为基本型(不含一体化控制单元),含一体化控制装置的应用为 SC02。

SMQ 系列角行程执行器可以做到最大推力 30000N, 更大的直行程采用多回转执行器 SM+线性推力器 LT。


信息 kiket 直行程 SM+LT 可提供较宽的推力范围,基本可以涵盖 SML 系列,但是对于小推力和单相电源的情况首先考虑 SML 系列, SML 具有较小的体积和重量。

5.1 单独的执行器 SML 系列 (不含齿轮箱)

5.2 多回转执行器 SM+线性推力器 LT

对于直行程较大的输出, kiket 提供多回转执行器 SM 系列+线性推力器 LT 的解决方案。

信息 kiket 直行程 SM+LT 不含与阀门的连接支架,如果需要可定制加工。

Electrical data Multi-turn actuators for open-close duty with 3-phase AC motors

SM04-SM100

Short-time duty S2 - 15 min, 380 V/50 Hz

Multi-t	urn a	ctuator		357 87		Moto	or			3		
Туре	Speed rpm	Torque max. Nm	Туре	1 Power PN (kW)	Speed rpm	Nominal current IN (A)	Current approx. Imax. (A)	Startingc urrent IA (A)	cos ¢		iket er class Thyristor 4)	Approx. Weight (kg)
	11	0	MA04-4-0.13	0.13	1400	0.40	0.5	1.1	0.50	C1	T1	26
	22		MA04-8-0.23	0.23	700	0.60	0.7	2.0	0.57	C1	T1	20
CMOA	45	40	MA04-4-0.28	0.28	1400	1.00	1.1	2.5	0.42	C1	T1	
SM04	90		MA04-4-0.32	0.32	1400	0.80	1.4	4.6	0.60	C1	T1	07
	135		MA04-4-0.41	0.41	1400	0.90	1.6	4.6	0.70	C1	T1	27
	180	35	MA04-2-0.48	0.48	2800	1.05	1.7	4.6	0.70	C1	T1	
	11		MA07-4-0.15	0.15	1400	0.60	0.7	1.7	0.38	C1	T1	00
	22		MA07-8-0.24	0.24	700	0.70	1.1	3.2	0.52	C1	T1	28
CM07	45	70	MA07-4-0.47	0.47	1400	1.70	2.1	4.8	0.42	C1	T1	
SM07	90		MA07-4-0.59	0.59	1400	1.70	2.6	9.5	0.53	C1	T1	00
	135		MA07-4-0.73	0.73	1400	1.80	3.2	9.5	0.62	C1	T1	29
9	180	60	MA07-2-0.81	0.81	2800	1.98	3.4	9.5	0.62	C1	T1	
	9		MA12-4-0.29	0.29	1400	1.10	1.2	3.2	0.40	C1	T1	0.4
	18		MA12-4-0.48	0.48	700	1.40	1.6	4.7	0.52	C1	T1	31
0140	35	120	MA12-4-0.72	0.72	1400	2.60	2.7	8.9	0.42	C1	T1	
SM12	70		MA12-4-1.14	1.14	1400	3.20	3.8	17	0.54	C1	T1	24
	105		MA12-4-1.56	1.56	1400	3.70	5.5	17	0.64	C1	T2	34
	140	100	MA12-2-1.64	1.64	2800	3.90	5.8	17	0.64	C1	T2	
	9		MA30-4-0.43	0.43	1400	1.10	1.7	5.5	0.60	C1	T1	50
	18		MA30-8-0.67	0.67	700	1.60	3.2	9.5	0.64	C1	T1	52
01100	35	300	MA30-4-1.06	1.06	1400	2.60	4.2	17	0.62	C1	T1	
SM30	70		MA30-4-1.93	1.93	1400	4.90	7.4	40	0.60	C1	T2	
	105		MA30-4-2.40	2.40	1400	5.60	12	40	0.65	C1	T2	56
	140	250	MA30-2-2.52	2.52	2800	5.90	12	40	0.65	C1	T2	
	9		MA50-4-0.66	0.66	1400	1.80	3.2	9.8	0.56	C1	T1	7210
	18		MA50-8-1.28	1.28	700	3.80	5.3	19	0.51	C1	T1	54
01450	35	500	MA50-4-2.10	2.10	1400	5.60	7.9	40	0.57	C1	T2	
SM50	70		MA50-4-3.75	3.75	1400	9.50	14	61	0.60	C2	1-	
	105		MA50-4-4.28	4.28	1400	10.00	22	61	0.65	C2	8-3	61
33	140	400	MA50-2-4.75	4.75	2800	11.10	23	61	0.65	C2	-	
3	9		MA100-4-1.09	1.09	1400	2.90	5.3	23	0.57	C1	T1	
	18		MA100-8-1.91	1.91	700	5.10	9.2	42	0.57	C1	T2	77
014400	35	1000	MA100-4-4.16	4.16	1400	8.90	14	63	0.71	C2	1 - 1	
SM100	70	Strain III	MA100-4-6.32	6.32	1400	12.00	26	126	0.80	СЗ	8-0	88
	105		MA100-4-7.10	7.10	1400	13.00	37	126	0.83	C3	0_0	
	140	800	MA100-2-8.30	8.30	2800	15.20	47	126	0.83	C3	-	92

The nominal electrical power can be calculated using the following formula: P = U x I x cos φ x √3

We reserve the right to alter data according to improvements made. Previous documents become invalid with the issue of this document.

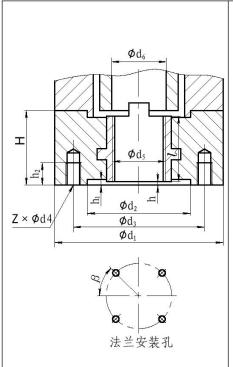
Issue 1.15

²⁾ Current at operating torque
3) Current at max. torque. We recommend to select switchgears according to these values.
4) Assignment of switchgears when using SCHWARZ controls of types SC01. C1≤3KW; 3KW<C2≤6KW; C3>6KW; T1≤1.5KW; 1.5KW<T2≤3KW

Electrical data Multi-turn actuators for Modulating duty SMR04with 3-phase AC motors **SMR100** Modulating duty S4 - 25 %, 380 V/50 Hz

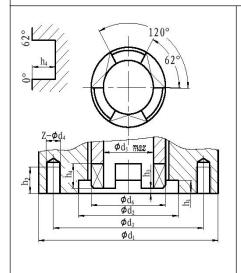
Multi-tu	rn act	uator				Mot	or					
Type	Speed	Torque MARx. Nm	Туре	Power 1 PN (kW)	Speed rpm	Nominal 2) current IN (A)	Current 3) approx. IMARx.	Starting current IA (A)	cos ф	100	Power ass Thyristor ⁴	Approx. Weight (kg)
	11		MAR04-4-0.13	0.13	1400	0.40	0.5	1.1	0.50	C1	T1	26
	22	ž.	MAR04-8-0.23	0.23	700	0.60	0.7	2.0	0.57	C1	T1	20
SMR04	45	40	MAR04-4-0.28	0.28	1400	1.00	1.1	2.5	0.42	C1	T1	
	90	2	MAR04-4-0.32	0.32	1400	0.80	1.4	4.6	0.60	C1	T1	27
	135		MAR04-4-0.41	0.41	1400	0.90	1.6	4.6	0.70	C1	T1	
	11		MAR07-4-0.15	0.15	1400	0.60	0.7	1.7	0.38	C1	T1	28
	22		MAR07-8-0.24	0.24	700	0.70	1.1	3.2	0.52	C1	T1	20
SMR07	45	70	MAR07-4-0.47	0.47	1400	1.70	2.1	4.8	0.42	C1	T1	
THE PARTY OF	90	8	MAR07-4-0.59	0.59	1400	1.70	2.6	9.5	0.53	C1	T1	29
	135	1	MAR07-4-0.73	0.73	1400	1.80	3.2	9.5	0.62	C1	T1	
	9		MAR12-4-0.29	0.29	1400	1.10	1.2	3.2	0.40	C1	T1	24
	18		MAR12-4-0.48	0.48	700	1.40	1.6	4.7	0.52	C1	T1	31
SMR12	35	120	MAR12-4-0.72	0.72	1400	2.60	2.7	8.9	0.42	C1	T1	
	70		MAR12-4-1.14	1.14	1400	3.20	3.8	17	0.54	C1	T1	34
	105		MA12-4-1.56	1.56	1400	3.70	5.5	17	0.64	C1	T2	
	9		MAR30-4-0.43	0.43	1400	1.10	1.7	5.5	0.60	C1	T1	52
	18		MAR30-8-0.67	0.67	700	1.60	3.2	9.5	0.64	C1	T1	52
SMR30	35	300	MAR30-4-1.06	1.06	1400	2.60	4.2	17	0.62	C1	T1	
	70		MAR30-4-1.93	1.93	1400	4.90	7.4	40	0.60	C1	T2	56
	105		MAR30-4-2.40	2.40	1400	5.60	12	40	0.65	C1	T2	
	9		MAR50-4-0.66	0.66	1400	1.80	3.2	9.8	0.56	C1	T1	54
	18		MAR50-8-1.28	1.28	700	3.80	5.3	19	0.51	C1	T1	54
SMR50	35	500	MAR50-4-2.10	2.10	1400	5.60	7.9	40	0.57	C1	T2	
	70		MAR50-4-3.75	3.75	1400	9.50	14	61	0.60	C2	22	61
	105	2	MAR50-4-4.28	4.28	1400	10.00	22	61	0.65	C2	-	
	9		MAR100-4-1.09	1.09	1400	2.90	5.3	23	0.57	C1	T1	77
	18	e E	MAR100-8-1.91	1.91	700	5.10	9.2	42	0.57	C1	T2	11
SMR100	35	1000	MAR100-4-4.16	4.16	1400	8.90	14	63	0.71	C2	:	88
	70		MAR100-4-6.32	6.32	1400	12.00	26	126	0.80	C3	_	00
	105		MAR100-4-7.10	7.10	1400	13.00	37	126	0.83	C3	_	92

We reserve the right to after data according to improvements MARde. Previous documents become invalid with the issue of this document.

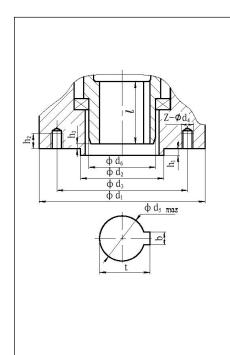


Issue 1.15

T01.02/en


The nominal electrical power can be calculated using the following formula: P = U x I x cos (\(\int_3 \))

²⁾ Current at operating for que
3) Current at MARx. tor que. We recommend to select switchgears according to the se values.
4) Assignment of switchgears when using SCHWARZ controls of types SC01. C1≤3KW; 3KW<C2≤6KW; C3>6KW; T1≤1.5KW; 1.5KW<T2≤3KW


表 1	阀杆螺母	连接 (A 型连	妾)	位: mm
机型	SM(D)07 E10	SM(R)12-F10	SM(R)30-F14	CM(D)100 E16
代号	SM(R)07-F10	SM(R)12-F10	SM(R)50-F14	SM(R)100-F16
法兰代号	F10	F10	F14	F16
最大推力	40	70	160	250
Φd1	Ф125	Ф125	Ф175	Ф210
Φd2	Φ70	Φ70	Ф100	Ф130
Фd3	Ф102	Ф102	Ф140	Ф165
Φd4	M10	M10	M16	M20
Φd5 max	Ф28	Ф40	Ф58	Φ75
Φd6	Ф34	Ф42	Ф60	Φ80
h	1	1	2	2
h1	3	3	4	5
h2	15	15	25	35
Н	50	55	65	80
1	50	55	65	80
Z	4	4	4	4
β	90°	45°	45°	45°

执行机构通过 A 型驱动器的驱动螺母与阀门阀杆连接,在传递转矩的同时承受一定的轴向推力。

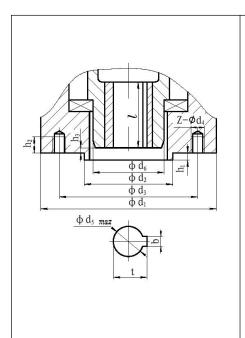


表 2	三爪達	连接(B 型连接)	单位:	mm
机型 代号	SM(R)07-F10	SM(R)12-F10	SM(R)30-F14 SM(R)50-F14	SM(R)12-F10
Φd1	Ф125	Ф125	Ф175	Ф210
Φd2 H9	Φ70	Φ70	Ф100	Ф130
Φd3	Ф102	Ф102	Ф140	Ф165
Φd4	M10	M10	M16	M20
Φd5 max	Ф42	Ф42	Φ60	Φ80
Φd6	Ф55	Ф55	Φ80	Ф105
h1	3	3	4	5
h2	15	15	25	35
h3	2	2	3	4
h4	8	8	10	12
Z	4	4	4	4

执行机构主机只适用于传递转矩(不能承受轴向推力)的应用场合。因此,不能直接连接需要传递轴向推力的阀门。主机可与二级减速器、A型驱动器(能够承载轴向推力)、直行程驱动器连接,以驱动相应的阀门。

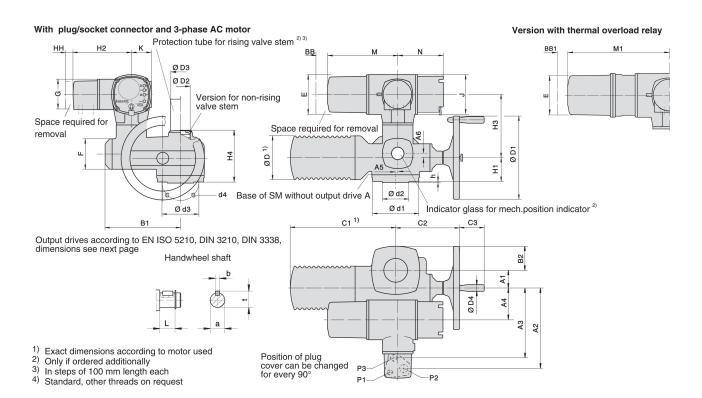


表 3	大轴径平领	建连接 (B1 型)	连接) 单位	ऐ: mm
机型	SM(R)07-F10	SM(R)12-F10	SM(R)30-F14	SM(R)100-F16
代号	SW(K)07-110	SWI(K)12-1/10	SM(R)50-F14	SW(K)100-1 10
Φd1	Ф125	Ф125	Ф175	Ф210
Φd2 f8	Ф70	Ф70	Ф100	Ф130
Φd3	Ф102	Ф102	Ф140	Ф165
Φd4	M10	M10	M16	M20
Φd5 H9	Ф42	Ф42	Ф60	Φ80
Φd5 min	Φ	Φ	Φ	Φ
Φd6	Ф55	Ф55	Φ80	Ф105
h1	3	3	4	5
h2	15	15	25	30
h3	1	1	2	3
t	45.3	45.3	64.4	85.4
b	12	12	18	22
Z	4	4	4	4
1	45	45	65	80
驱动装	支置与阀门连接的	内法兰尺寸遵行	EN ISO5210 标准	

表 4	小轴径平键	连接 (B3 型连	接) 单	位: mm
机型代号	SM(R)07-F10	SM(R)12-F10	SM(R)30-F14 SM(R)50-F14	SM(R)100-F16
Φd1	Ф125	Ф125	Ф175	Ф210
Фd2 f8	Φ70	Ф70	Ф100	Ф130
Фd3	Ф102	Ф102	Ф140	Ф165
Φd4	M10	M10	M16	M20
Фd5 Н9	Ф20	Ф20	Ф30	Ф40
Φd5 max	Ф20	Ф28	Ф40	Ф55
Φd6	Ф55	Ф55	Φ80	Ф105
h1	3	3	4	5
h2	15	15	25	30
h3	1	1	2	3
t	22.8	22.8	33.3	43.3
ь	6	6	8	12
Z	4	4	4	4
	45	45	65	80
驱动装置	量与阀门连接的流	去兰尺寸遵行 EN	N ISO5210 标准	

执行机构与阀杆直径较小的阀门、输入轴直径较小的二级减速器连接时,执行器与被连接件采用中间过渡套连接。被连接件的最大直径不大于表中 Φ d5 max 的值。

	Multi-turn actuator tvoe											
Dimensions	SM04 / SC 01 SM	R SM07/ SC 01 SMR	SM12 / SC 01 SM	IRSM30/ SC 01	SM50/ SC 01	SM100 / SC 01						
	04 / SC 01	07 / SC 01	12 / SC 01	SMR30/ SC 01	SMR50/SC 01	SMR100/ SC 01						
EN ISO 5210/DIN 3210	F07 (F10/G0)	F07 (F10/G0)	F10(G0)	F14(G1/2)	F14(G1/2)	F16(G3)						
A1	40	40	50	67	67	80						
A2	287	287	287	303	303	303						
A3	247	247	247	263	263	263						
A4	103	103	103	119	119	123.5						
A5		_		8	8	15						
A6	_			16	16	20						
B1	238	238	248	286	286	303						
B2	62	62	65	91	91	117						
C1	265	265	283	389	389	430						
C2	186	186	191	242	245	271						
C3	63	63	63	94	94	94						
0D	101	101	121	153	153	190						
0D1	160	160	200	315	400	500						
0D2	G 1%"	G VA "	G2"	G2O	G214 "	G3"						
0D3	42 x 3.3	42 x 3.3	60 x 3.7	76 x 3.7	76 x 3.7	89x4.1						
0D4	20	20	20	25	25	25						
Е	150	150	150	150	150	150						
F	115	115	115	115	115	115						
G	115	115	115	115	115	115						
H1	78	78	80	90	90	110						
H2	220	220	220	220	220	220						
Н3	225	225	225	241	241	245						
H4	160	160	170	196	196	235						
1	150	150	150	150	150	150						
K	75	75	75	75	75	75						
Ĺ	20	20	24	38.8	45.8	45.8						
M	265	265	265	265	265	265						
M1	349	349	349	349	349	349						
N	173	173	173	173	173	173						
P1 4)	M20x 1.5	M20 x 1.5	M20 x 1.5	M20x 1.5	M20x 1.5	M20 x 1.5						
P2.4)	M32x1.5	M32 x 1.5	M32x1.5	M32x1.5	M32 x 1.5	M32x1.5						
P3 4)	M25x1.5	M25x 1.5	M25x 1.5	M25x1.5	M25 x 1.5	M25x 1.5						
BB min.	70	70	70	70	70	70						
BB 1 min.	90	90	90	90	90	90						
HH min.	30	30	30	30	30	30						
a	20 d7	20 d7	20 d7	30 d7	30 d7	30 d7						
b	6	6	6	8	8	8						
0d1	90 (125)	901125)	125	175	175	210						
0d2	55 (70/60)	55 (70/60)	70 (60)	100	100	130						
0d2 0d3	70X102)	701102)	102	140	140	165						
d4	4 x M8 (4 xM10)	4xM8(4xM10)	4xM10	4xM16	4xM16	4xM20						
h	3	3	3	4	4	5						
t	22.5	22.5	22.5	33	33	33						

We reserve the right to alter data according to improvements made. Previous documents become invalid with the issue of this document.

SMQR05 - SMQR 300

Technical data Part-turn actuators for modulating duty with 3-phase AC motors Intermittent duty S4 - 25%, 380 V/50 Hz

	Part	-turn actuato	r		Motor							
Туре	Valve attachment EN ISO5211	Cylindrical max.mm	Operating time for 90° [in seconds]	Max. torque [Nm]	Nominal power ¹⁾	Nominal current ²⁾	Max. current ³⁾	Starting current	cos ф			
SMQR05	F07	20	22	50	0.02	0.3	0.45	1.1	0.11			
SMQR08	F07	20	22	80	0.02	0.3	0.45	1.1	0.11			
SMQR10	F07	20	22	100	0.02	0.3	0.45	1.1	0.11			
SMQR15	F10/F07	22	25	150	0.04	0.31	0.58	1.5	0.2			
SMQR20	F10/F07	22	25	200	0.04	0.31	0.58	1.5	0.2			
SMQR30	F12/F10	35	31	300	0.09	0.35	0.71	1.62	0.4			
SMQR50	F12/F10	35	31	500	0.09	0.59	0.78	1.63	0.23			
SMQR60	F12/F10	35	31	600	0.12	0.6	0.85	1.65	0.31			
SMQR80	F14/F12	45	37	800	0.18	0.85	1.45	2.93	0.32			
SMQR120	F14	45	37	1200	0.18	0.87	1.55	2.98	0.31			
SMQR150	F14	45	93	1500	0.18	0.85	1.45	2.93	0.32			
SMQR200	F14	45	112	2000	0.18	0.85	1.45	2.93	0.32			
SMQR300	F14	45	112	3000	0.18	0.87	1.55	2.98	0.31			

Notes on table

1) Nominal power PN Mechanical power output at motor shaft at running torque of multi-turn actuator

(corresponds to approx. 35 % of maximum torque).

Consumed electrical power can be calculated using the following formula:

P = U x I x cos ф x √3

2) Nominal current I_N Current at running torque.

Max. current Imax
 Current at maximum torque

We reserve the right to alter data according to improvements made. Previous documents become invalid with the issue of this document.

SMQR05 - SMQR 300

Technical data Part-turn actuators for modulating duty with 1-phase AC motors Intermittent duty S4 - 25%, 220 V/50 Hz

	Part	-turn actuato	r				Motor		
Туре	Valve attachment EN ISO5211	Cylindrical max.mm	Operating time for 90° [in seconds]	Max. torque	Nominal power ¹⁾ Pn [kW]	Nominal current ²⁾	Max. current ³⁾ Imax [A]	Starting current	cos φ
SMQR05	F07	20	22	50	0.02	0.54	0.76	2.12	0.17
SMQR08	F07	20	22	80	0.02	0.54	0.76	2.12	0.17
SMQR10	F07	20	22	100	0.02	0.54	0.76	2.12	0.17
SMQR15	F10/F07	22	25	150	0.04	0.84	1.18	3.29	0.22
SMQR20	F10/F07	22	25	200	0.04	0.85	1.19	3.33	0.21
SMQR30	F12/F10	35	31	300	0.09	0.92	1.29	3.61	0.44
SMQR50	F12/F10	35	31	500	0.09	1.58	2.21	6.19	0.26
SMQR60	F12/F10	35	31	600	0.12	2.20	3.08	8.62	0.25
SMQR80	F14/F12	45	37	800	0.18	2.20	3.08	8.62	0.37
SMQR120	F14	45	37	1200	0.18	2.30	3.22	9.02	0.36
SMQR150	F14	45	93	1500	0.18	2.20	3.08	8.62	0.37
SMQR200	F14	45	112	2000	0.18	2.20	3.08	8.62	0.37
SMQR300	F14	45	112	3000	0.18	2.30	3.22	9.02	0.36

Notes on table

1) Nominal power P_N Mechanical power output at motor shaft at running torque of multi-turn actuator

(corresponds to approx. 35 % of maximum torque).

Consumed electrical power can be calculated using the following formula:

P = U x I x cos ф

Nominal current I_N
 Current at running torque.

3) Max. current Imax Current at maximum torque

We reserve the right to alter data according to improvements made. Previous documents become invalid with the issue of this document.

Technical data Part-turn gearboxes and primary reduction gearings, version with worm wheel made of spheroidal castiron

GW 60 - GW(S)600 GW(S)1080 - GW(S)3900Spheroidal castiron

Application

Manual operation and motor operation of valves (e.g. butterfly valves and ball valves).

For special applications, please consult kiket

	7	Worm gearbo	xes GW60 - GW	600 with prima	ry reducti	on gearir	ngs GWS		
	Valve			vo.	Gear	boxes			
Max. permissible valve torque ¹⁾		lve	Gearbox/ prim. red. gearing	Reduction ratio	Turns Factor		Input Shaft ²)	Max. input	Weight ⁴⁾
-	Flange	Max.							
	acc. to	shaft							GW/GWS
in Nm	ENISO	diameter							
up to	5211	in mm					mm	in Nm	kg
600	F10 ⁵⁾ F12	45	GW60	51:1	12.75	15.3	20	70	13
E425)		60	GW160	53:1	13.25	15.9	20	120	18
1600	F14 60	80	GWS160	106:1	26.5	31.8	20	120	18
			GW270	60:1	15	18			47
				120:1	30	36			65
	E4.45)			144:1	36	43.2			65
2700	F14 ⁵⁾ F16	80	GWS270	168:1	42	50.4	20	120	GW/GWS kg 13 18 18 47 65
	1 10		GW3270	180:1	45	54			65
				240:1	60	72			65
				300:1	75	90			65
			GW600	60:1	15	18			66
				90:1	22.5	27			84
				102:1	25.5	30.6			84
	F16 ⁵⁾			120:1	30	36			
6000	F25	90	GWS600	156:1	39	46.8	20/30	300	84
			3113000	180:1	45	54			
				204:1	51	61.2			
				240:1	60	72			1859050
				300:1	75	90			84
	Possible	combinations	with multi-turn	actuators	Multi	-turn	Flan	ge ²⁾ for	Max.

												•				-
		Poss	sible	comb	oinati	ons v	vith n	nulti-	turn a	actua	tors		Multi-turn actuator	actuator mounting of		Max. Weight ⁷⁾
Gearboxes/ prim. red			Oį		g times at actu					0°			Actuator for max. input torque	multi-t actua		GW/GWS+SM+SC
gearing	9	11	18	22	35	45	70	90	105	135	140	180		EN ISO 5210	DIN 3210	max. kg
GW60	_	70	-	35	-	17	_	-	-	-	-	0-0	SM04	F07	0-0	38
GWOU	_	70	-	35	_	17	-	_	-	-	0-0	x	SM07	F10	G0	41
GW160	89	73	45	37	23	18	-	1922	722		3 <u>-</u> 0	2-4	SM07	F10	G0	46
GWS160	177	145	89	73	45	36	23	18	-	-	9-3		SM12	FIU	GU	50
GW270	100	82	49	41	26	20	-		-	-		81 - 81-				79
	200	164	98	82	52	40	26	20	-	-	-	2-1				
	240	197	118	99	63	48	31	24	21	16	-	32 — 33	01407			94
GWS270	280	230	138	115	73	56	36	28	24	19	_	-	SM07 SM12	F10	G0	99
GW5270	300	246	147	123	78	60	39	30	26	20	19	15 ⁸⁾	3W12			
	400	328	196	164	104	80	52	40	35	27	26	208)				
	500	410	245	205	130	100	65	50	43	34	33	258)				
GW600	100	82	49	41	26	20	-	-	-	-	7.—7	a—a				122
	150	123	75	62	39	30	20	15	7=	-	-	-				
	170	140	84	70	45	34	22	17	-	-						
	200	164	98	82	52	40	26	20		-	9-1	N-00	SM07	F10	G0	212
GWS600	260	214	128	107	68	52	34	26	23	18	- 88 <u></u> 3	2-3	SM12		Sec. Self-Arres	217
GW3600	300	246	147	123	78	60	39	30	26	20	19	158)	SM30	F14	G1/2	140
	342	281	168	141	89	69	44	34	30	23	22	178)				
	400	328	196	164	104	80	52	40	35	27	26	208)				
	500	410	245	205	130	100	65	50	43	34	33	258)				

l We reserve the right to alter data according to improvements made. Previous documents become invalid with the issue of this document www.kiket-tech.com Issue 1.1 Y000.265/001/en

Technical data Part-turn gearboxes and primary reduction gearings, version with worm wheel made of spheroidal castiron

GW 60 - GW(S)600 GW(S)1080 - GW(S)3900 Spheroidal castiron

Application

Manual operation and motor operation of valves (e.g. butterfly valves and ball valves).

For special applications, please consult kiket

Worm gearboxes GW60 – GW 600 with primary reduction gearings GWS

1	Valve						oxes			
Max.	V	alve	Gearbox/	Reduction	Turns	Factor	Input	Max. input	Weight 4)	
permissible ralve torque ¹⁾	attac	chment	prim. red. gearing	ratio	for 90°		Shaft ²)	Torques ³⁾		
	Flange	Max.								
in Nm	acc. to EN ISO	shaft diameter							GW/GWS	
up to	5211	in mm					mm	in Nm	ka	
1000			GW1080	60:1	15	18				
				90:1	22.5	27			GW/GWS kg 121 151 151 151 151 151 151 15	
				102:1	25.5	30.6			151	
				120:1	30	36			151	
	F2F5)			156:1	39	46.8			151	
10800	F25 ⁵⁾ F30	100	CWS1000	180:1	45	54	20/30	500	151	
	100		GW31000	204:1	51	61.2			151	
				prim. red. gearing ratio for 90° shaft ²) Torques ³) GW1080 60:1 15 18 90:1 22.5 27 102:1 25.5 30.6 120:1 30 36 156:1 39 46.8 180:1 45 54 20/30 500	151					
			GW1950							
								L		
									A CONTRACTOR OF THE PROPERTY O	
									121 151 151 151 151 151 151 151 151 151	
									20112101702	
19500	F30 ⁵⁾	125	GWS1950				20/30/40	1000		
	F33									
									7,779,77	
						100000000000000000000000000000000000000			200000000000000000000000000000000000000	
								<u>-</u>		
			GW3900							
			011000					-		
20000	F35 ⁵⁾	160					20/20/40	1000	368	
39000	F40	100	GWS3900	385:1	96.25	123.2	20/30/40	1000	368	
	140								368	
									7/4555	
						5000 SE 100 SE 20 SE SE SE SE SE			WEST-000 2863	
			of the maximum per	880:1	220	281.6			368	

1) For ball valve applications, sizing up to 80 % of the maximum permissible valve torque
2) Depending on the required input torque
3) In new condition approx. 15 % higher input torque required
4) With coupling (without bore) and grease filling in the gear housing
5) Observe the maximum torques of the mounting flanges in accordance with EN ISO 5211

www.kiket-tech.com

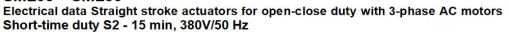
Issue

1.1 Y000.265/001/en

Technical data Part-turn gearboxes and primary reduction GW 60 - GW(S)600 gearings, version with worm wheel made of spheroidal castiron GW(S)1080 - GW(S)3900 Spheroidal castiron Possible combinations with multi-turn actuators Multi-turn Max Flange³ for actuator Weight⁷⁾ mounting of Actuator for multi-turn Gearboxes/ Operating times for 50 Hz⁶⁾ in seconds for 90° max. prim. red actuator at actuator speed in rpm input torque gearing GW/GWS+SM+SC EN ISO 5210 DIN 3210 max. kg GW1080 **SM07** F10 GO GWS1080 SM12 178) 208) 258) GW1950 198) **SM07** F10 GO SM12 GWS1950 338) **SM30** F14 G1/2 SM50 378) 408) 638) 688) 748) GW3900 **SM07** F10 G0 238) SM12 288) **SM30** F14 G1/2 GWS3900 SM50 378) F16 G3 SM100 408) 548) 588)

624 510

638)


We reserve the right to alter data according to improvements made. Previous documents become invalid with the issue of this document

				3/5
kiket	www.kiket-tech.com	Issue	1.1 Y000.265/001/en	

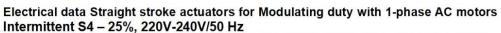
378 294 189

⁸⁾ Observe max. output torque of the multi-turn actuator

St	Straight stroke actuator				Motor								
	Output	Max.	Stroke		Nominal	Nominal	Max. current ³⁾ I _{max} [A]	Starting		kiket power class switchgears			
Туре	speed [mm/s]	torque [kN]	Max. mm	Motor type	power ¹ P _N [kW]	current ²⁾ I _N [A]		I _A [A]	cos p	Contactor	Thyristo		
	0.75			MD03-0.015	0.015	0.09	0.12	0.36	0.51	C1	T1		
SML03	1.0	3	25	MD03-0.03	0.03	0.11	0.14	0.42	0.82	C1	T1		
	1.5			MD03-0.03	0.03	0.11	0.16	0.48	0.82	C1	T1		
	0.75			MD05-0.02	0.02	0.12	0.07	0.21	0.5	C1	T1		
SML05	1.0	5	40	MD05-0.045	0.045	0.16	0.21	0.63	0.85	C1	T1		
	1.5			MD05-0.045	0.045	0.16	0.24	0.72	0.85	C1	T1		
	0.75		60	MD08-0.04	0.04	0.18	0.23	0.69	0.67	C1	T1		
SML08	1.0	8		MD08-0.06	0.06	0.23	0.31	0.93	0.79	C1	T1		
	1.5			MD08-0.06	0.06	0.23	0.35	1.05	0.79	C1	T1		
	0.75			MD10-0.04	0.04	0.33	0.43	1.29	0.37	C1	T1		
SML ₁₀	1.0	10	60	MD10-0.09	0.09	0.41	0.53	1.59	0.66	C1	T1		
	1.5			MD10-0.09	0.09	0.41	62	186	0.66	C1	T1		
	0.75			MD16-0.06	0.06	0.36	0.47	1.41	0.51	C1	T1		
SML ₁₆	1.0	16	60	MD16-0.09	0.09	0.45	0.49	1.47	0.61	C1	T1		
	1.5			MD16-0.09	0.09	0.45	0.59	1.77	0.61	C1	T1		
	0.75			MD20-0.06	0.09	0.39	0.51	1.53	0.7	C1	T1		
SML20	1.0	20	60	MD20-0.09	0.09	0.49	0.64	1.92	0.55	C1	T1		
and a second management.	1.5		10000	MD20-0.09	0.09	0.49	0.74	2.22	0.55	C1	T1		
	0.75			MD25-0.09	0.09	0.42	0.55	1.65	0.65	C1	T1		
SML25	1.0	25	100	MD25-0.12	0.12	0.52	0.68	2.04	0.7	C1	T1		
	1.5			MD25-0.12	0.12	0.52	0.82	2.46	0.7	C1	T1		
	0.75			MD30-0.09	0.09	0.49	0.64	1.92	0.55	C1	T1		
SML30	1.0	30	100	MD30-0.12	0.12	0.58	0.81	2.43	0.62	C1	T1		
	1.5		7	MD30-0.12	0.12	0.58	0.92	2.76	0.62	C1	T1		

SMLR 03 - SMLR 30

Electrical data Straight stroke actuators for Modulating duty with 3-phase AC motors Intermittent duty S4-25%, 380V/50 Hz


Stra	ight stroke	actuator		Motor								
	Output	Max.	Stroke		Nominal	Nominal	Max.	Starting current		kiket power switchgear		
Туре	speed [mm/s]	torque [kN]	Max.	Motor type	power ¹ P _N [kW]	current ²⁾ I _N [A]	current ³⁾ I _{max} [A]	I _A [A]	cos p	Contactor	Thyristor	
	0.75	į		MD03-0.015	0.015	0.09	0.12	0.36	0.51	C1	T1	
SMLR03	1.0	3	25	MD03-0.03	0.03	0.11	0.14	0.42	0.82	C1	T1	
	1.5			MD03-0.03	0.03	0.11	0.16	0.48	0.82	C1	T1	
	0.75			MD05-0.02	0.02	0.12	0.07	0.21	0.5	C1	T1	
SMLR05	1.0	5	40	MD05-0.045	0.045	0.16	0.21	0.63	0.85	C1	T1	
3333334	1.5			MD05-0.045	0.045	0.16	0.24	0.72	0.85	C1	T1	
CONTRACTOR CONTRACTOR	0.75			MD08-0.04	0.04	0.18	0.23	0.69	0.67	C1	T1	
SMLR08	1.0	8	60	MD08-0.06	0.06	0.23	0.31	0.93	0.79	C1	T1	
	1.5			MD08-0.06	0.06	0.23	0.35	1.05	0.79	C1	T1	
	0.75			MD10-0.04	0.04	0.33	0.43	1.29	0.37	C1	T1	
SMLR10	1.0	10	60	MD10-0.09	0.09	0.41	0.53	1.59	0.66	C1	T1	
	1.5			MD10-0.09	0.09	0.41	62	186	0.66	C1	T1	
	0.75			MD16-0.06	0.06	0.36	0.47	1.41	0.51	C1	T1	
SMLR16	1.0	16	60	MD16-0.09	0.09	0.45	0.49	1.47	0.61	C1	T1	
	1.5			MD16-0.09	0.09	0.45	0.59	1.77	0.61	C1	T1	
	0.75			MD20-0.06	0.09	0.39	0.51	1.53	0.7	C1	T1	
SMLR20	1.0	20	60	MD20-0.09	0.09	0.49	0.64	1.92	0.55	C1	T1	
	1.5			MD20-0.09	0.09	0.49	0.74	2.22	0.55	C1	T1	
	0.75		F10000000	MD25-0.09	0.09	0.42	0.55	1.65	0.65	C1	T1	
SMLR25	1.0	25	100	MD25-0.12	0.12	0.52	0.68	2.04	0.7	C1	T1	
	1.5			MD25-0.12	0.12	0.52	0.82	2.46	0.7	C1	T1	
ACCUMULATIVA ACCUMANTANCE	0.75			MD30-0.09	0.09	0.49	0.64	1.92	0.55	C1	T1	
SMLR30	1.0	30	100	MD30-0.12	0.12	0.58	0.81	2.43	0.62	C1	T1	
	1.5			MD30-0.12	0.12	0.58	0.92	2.76	0.62	C1	T1	

SML 03 — SML 30 Electrical data Straight stroke actuators for open-close duty with 1-phase AC motors Short-time duty S2 - 15 min, 220V-240V/50 Hz

Str	aight stroke	actuator		Motor								
	Output	Max.	Stroke		Nominal	Nominal	Max.	Starting		kiket power class switchgears		
-	speed	torque	Max.	N4-1	power ¹	current ²⁾	current ³⁾	I _A [A]	cos	Contactor	T	
Туре	[mm/s] 0.75	[kN]	mm	Motor type MS03-0.02	P _N [kW]	I _N [A]	I _{max} [A]	0.07		C1	Thyristor T1	
CMICO		-				0.28	0.38	0.87	0.32			
SML03	1.0	3	25	MS03-0.03	0.03	0.31	0.42	0.96	0.44	C1	T1	
	1.5			MS03-0.03	0.03	0.31	0.42	0.96	0.44	C1	T1	
	0.75			MS05-0.025	0.025	0.39	0.53	1.21	0.29	C1	T1	
SML05	1.0	5	40	MS05-0.045	0.045	0.42	0.57	1.30	0.49	C1	T1	
	1.5			MS05-0.045	0.045	0.42	0.57	1.30	0.49	C1	T1	
	0.75			MS08-0.04	0.04	0.57	0.77	1.77	0.32	C1	T1	
SML08	1.0	8	60	MS08-0.06	0.06	0.62	0.84	1.93	0.44	C1	T1	
	1.5		00	MS08-0.06	0.06	0.62	0.84	1.93	0.44	C1	T1	
	0.75			MS10-0.06	0.06	0.73	0.99	2.27	0.37	C1	T1	
SML ₁₀	1.0	10	60	MS10-0.09	0.09	0.82	1.11	2.55	0.50	C1	T1	
	1.5	10	00	MS10-0.09	0.09	0.82	1.11	2.55	0.50	C1	T1	
	0.75			MS16-0.06	0.06	0.69	0.93	2.14	0.40	C1	T1	
SML ₁₆	1.0	16	60	MS16-0.09	0.09	0.85	1.15	2.64	0.48	C1	T1	
	1.5		00	MS16-0.09	0.09	0.85	1.15	2.64	0.48	C1	T1	
	0.75			MS20-0.06	0.06	0.72	0.97	2.24	0.38	C1	T1	
SML20	1.0	20	60	MS20-0.09	0.09	0.87	1.17	2.70	0.47	C1	T1	
	1.5		00	MS20-0.09	0.09	0.87	1.17	2.70	0.47	C1	T1	
	0.75			MS25-0.09	0.09	1.09	1.47	3.38	0.38	C1	T1	
SML25	1.0	25	100	MS25-0.12	0.12	1.22	1.65	3.79	0.45	C1	T1	
	1.5		100	MS25-0.12	0.12	1.22	1.65	3.79	0.45	C1	T1	
	0.75			MS30-0.09	0.09	1.16	1.57	3.6	0.35	C1	T1	
SML30	1.0	30	100	MS30-0.12	0.12	1.28	1.73	3.97	0.43	C1	T1	
	1.5	1	100	MS30-0.12	0.12	1.28	1.73	3.97	0.43	C1	T1	

SMLR 03 - SMLR 30

Stra	ight stroke	actuator		Motor								
	Output	Max.	Stroke	=-	Nominal	Nominal	Max.	Starting current		kiket power class switchgears		
Туре	speed [mm/s]	torque	Max. mm	Motor type	power ¹ P _N [kW]	current ²⁾ I _N [A]	current ³⁾ I _{max} [A]	I _A [A]	cos p	Contactor	Thyristo	
	0.75			MS03-0.02	0.02	0.28	0.38	0.87	0.32	C1	T1	
SMLR03	1.0	3	25	MS03-0.03	0.03	0.31	0.42	0.96	0.44	C1	T1	
	1.5	3	23	MS03-0.03	0.03	0.31	0.42	0.96	0.44	C1	T1	
	0.75			MS05-0.025	0.025	0.39	0.53	1.21	0.29	C1	T1	
SMLR05	1.0	5	40	MS05-0.045	0.045	0.42	0.57	1.30	0.49	C1	T1	
	1.5	3	40	MS05-0.045	0.045	0.42	0.57	1.30	0.49	C1	T1	
	0.75			MS08-0.04	0.04	0.57	0.77	1.77	0.32	C1	T1	
SMLR08	1.0	8	60	MS08-0.06	0.06	0.62	0.84	1.93	0.44	C1	T1	
	1.5	0		MS08-0.06	0.06	0.62	0.84	1.93	0.44	C1	T1	
	0.75			MS10-0.06	0.06	0.73	0.99	2.27	0.37	C1	T1	
SMLR10	1.0	10	60	MS10-0.09	0.09	0.82	1.11	2.55	0.50	C1	T1	
	1.5	10	00	MS10-0.09	0.09	0.82	1.11	2.55	0.50	C1	T1	
	0.75			MS16-0.06	0.06	0.69	0.93	2.14	0.40	C1	T1	
SMLR16	1.0	16	60	MS16-0.09	0.09	0.85	1.15	2.64	0.48	C1	T1	
	1.5	No.		MS16-0.09	0.09	0.85	1.15	2.64	0.48	C1	T1	
	0.75			MS20-0.06	0.06	0.72	0.97	2.24	0.38	C1	T1	
SMLR20	1.0	20	60	MS20-0.09	0.09	0.87	1.17	2.70	0.47	C1	T1	
	1.5		00	MS20-0.09	0.09	0.87	1.17	2.70	0.47	C1	T1	
	0.75			MS25-0.09	0.09	1.09	1.47	3.38	0.38	C1	T1	
SMLR25	1.0	25	100	MS25-0.12	0.12	1.22	1.65	3.79	0.45	C1	T1	
	1.5			MS25-0.12	0.12	1.22	1.65	3.79	0.45	C1	T1	
	0.75			MS30-0.09	0.09	1.16	1.57	3.6	0.35	C1	T1	
SMLR30	1.0	30	100	MS30-0.12	0.12	1.28	1.73	3.97	0.43	C1	T1	
Market Charles State Control of the	1.5	2000000	100	MS30-0.12	0.12	1.28	1.73	3.97	0.43	C1	T1	

Technical data kiketlinear thrust unit for Modulating duty

LT 12 - LT 230 with SMR 04 - SMR 100

kiketlinear thrust units LT 12 - LT 230 attached to multi-turn actuators SMR 04 - SMR 100 are used for valves requiring linear travel. The thrust units convert the output torque of the multi-tum actuator into an axial thrust.

Suitable multi-turn	actuator	Thrust ¹⁾	Linear thrust unit	Speed	Valve mounting flange	Stem thread	Factor 2)	Stroke	Thrust at stall torque	Weight
Туре	1/min	F max. kN	Туре	mm/min	DIN 3358		f	max. mm	F max. kN	ca. kg
100	11			55				50		8
0112.01	22	1	1.740	110				100	111	9
SMR 04	45	12	LT12	225	F10	26 x 5 LH	2.8	200	24	10
	90			450				400		13
	11			55		6 6		50		8
0110.07	22]	1.705	110		26 x 5 LH	2.8	100	46	9
SMR 07	45	25	LT25	225	F10			200		10
	90			450	Î			400		13
9	9	40		54		32 x 6 LH		63	64	10
CHE 40	18		LT40	108	F10		3.0	125		12
SMR 12	35	40		210			3.0	250		15
	70	2 8		420				400		18
	9	70	L170	63	- F14			80	100	23
CMD 20	18			126		40 x 7 LH	4.0	160		26
SMR 30	35			245			4.0	320		32
	70			490				400		35
	9			63				80		23
0110.50	18	1	LT140	126		100011702 20030		160	407	26
SMR 50	35	140		245	F14	40 x 7 LH	4.0	320	197	32
	70			490				400		35
	9			72				100		45
OMD 400	18	200	17000	144	F40	40 0111		200	240	50
SMR 100	35	230	LT230	280	F16	48 x 8 LH	4.4	400	318	62
	70	1		560				500		68
Weight of base		to to	LT12 LT25 LT40				LT70		LT140	LT230

Technical data for multi-turn actuators refer to sheet «Technical/Electrical Data SMR 04 - SMR 100», latest issue.

- 1) at min. / max. setting of torque switching at actuator, tolerance 20 %
- 2) Conversion factor f for torque (T in Nm) to thrust (F in kN) at average coefficient of friction 0, 15 (T = F \times f) 3) without multi-turn actuator and base

We reserve the right to alter data according to improvements made. Previous data sheets become invalid with the issue of this data sheet.

www.kiket-tech.com

Issue

1.1 Y000.275/011/en

SHANGHAI KAIKAI TECHNOLOGY DEVELOPMENT CO.,LTD

Address: No. 499, Kanghua Road, Pudong New Area, Shanghai

Tel: +86-21-61640516 Mobil: +86-13701864977

Website: www.kiket-tech.com

Email: shkkjd@sina.com, mailbox@jickee.com, info@schwarz-tech.com